

X-ray probes of ordered electronic phases in strongly correlated systems

Riccardo Comin

Massachusetts Institute of Technology

MIT-BNL workshop, 26 Jul 2017

Outline

- What is a quantum solids
- Different forms of electronic crystals
- Resonant X-ray Scattering: crystallography for electrons
- Charge order in high-temperature superconductors
- The frontier: Coherent X-ray nanoscattering and imaging

What is a quantum solid?

Defining a quantum solid is not easy

Graphite? No

Graphene? Yes

What is a quantum solid?

Defining a quantum solid is not easy

66

I shall not today attempt further to define the kinds of material I understand to be embraced within that shorthand description ["quantum solid"], and perhaps I could never succeed in intelligibly doing so. But I know it when I see it

 $U \ll kT$ Kinetic energy (T) Hoteraction energy $U \gg kT$

Order from disorder

Order from disorder

Order from disorder

Strong interactions (U)

Localized orbitals

hydrogen 1 H		dorbitals :MENTS										helium 2 He						
athium 3 Li 6,941	Be 9,0122 magnesium	3d _x	X	3d,	"	36	3/3	3d	y /	3d,	7-4	, y	5 B 10.811	6 C 12.011 sticon	nitrogen 7 N 14.007 phosphorus	Oxygen 8 O 15,999 sulfur	fluorine 9 F 18.998 chlorine	10 Ne 20,180 argon
Na 22,990 potassium	Mg 24,305 coldum	27	Z	Utanium	X Z	chromium	Z	iron	cotalt	nickel	copper	zine	13 AI 26,982 gallium	Si 28.096	15 P 30.974 arsenic	16 S 32.065 selenium	17 CI 35.453 bromine	Ar 39,948 krypton
19 K 39.098 rubidium	Ca 40,078		SC 44.966 vttrium	ZZ Ti 47.867 zirconium	23 V 50.942 niobium	Cr 51.996 molybdenum	Mn 54,938 technetium	Fe 55.845	27 Co 58.933	Ni 58.693	Cu 63.546 silver	Zn 65.39	31 Ga 69.723	32 Ge	As 74.922 antimony	34 Se 78.96 tellurium	35 Br 79,904 lodine	Kr 83.80 xenon
37 Rb 85.468	38 Sr 87.62		39 Y 88.906	40 Zr 91,224	41 Nb 92,906	Mo 95,94	Tc	Ru 101.07	45 Rh	46 Pd 106.42	47 Ag	48 Cd	49 In	50 Sn	51 Sb 121.76	Te 127.60	53 126,90	Xe 131,29
55 Cs	56 Ba	57-70 X	174.97	hafnium 72 Hf 178.49	73 Ta	tungsten 74 W 183.84	75 Re	osmium 76 OS	192.22	Pt 195.08	90ld 79 Au 196.97	80 Hg	thallium 81 TI 204.38	Pb	Bi 208,98	Po 1209l	astatine 85 At	Rn
francium 87 Fr	Ra	89-102 * *	103 Lr	rutherfordium 104 Rf	105 Db	seaborgium 106 Sg	bohrium 107 Bh	hassium 108 Hs	meitnerium 109 Mt	ununntlium 110	Unununium 111 Uuu	ununbium 112	204,30	Ununquadum 114 Uuq		[200]	[210]	[222]
	a marina n		lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadelinium	terbium	dysprosium	holmium	erbium	thullium.	ytterbium	1	
*Lanthanide series			La 138.91 actinium	Ce	Pr 140.91 protactinium	Nd 144.24 uranium	Pm [145] neotunium	Sm 150.36 plutonium	Eu 151,96 americium	Gd 157.25 curlum	65 Tb 158.93 berkelium	Dy 162.50 californium	Ho 164.93	68 Er 167.26 fermium	Tm 168.93	70 Yb 173.04 nobelium	8	
* * Actinide series			89 Ac	90 Th	91 Pa 231.04	92 U 238.03	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Strong interactions (*U*) Localized orbitals

Mr. Iron

Mr. Nickel

Ordered states of matter

Symmetries defined by space group

Native symmetries of atomic lattice are broken!

Electronic crystals

Phase coexistence

La_{0.5}Sr_{1.5}MnO₄ spin/charge/orbital orders all at once!

Murakami et al., PRL 80, 1932 (1998)

vs Phase separation

FM and AFM orders competing to become ground state

E. Dagotto, Science **309**, 257 (2005)

Electronic crystals

E. Dagotto, Science 309, 257 (2005)

How do we detect electronic crystals?

We can detect static orders ($\omega = 0$) but also dynamical excitations ($\omega \neq 0$)

Valence electrons (shallow)

Core electrons (deep, tightly bound)

Lattice position —

Cross section ~ Z (no. of electrons)

Core electrons dominate XRD signal

XRD – X-Ray Diffraction

Resonant scattering

Valence electrons (shallow)

Core electrons (deep, tightly bound)

Lattice position →

Resonant enhancement

For an x-oriented hole we find $|f_D^{xx}| = 82$ electrons per hole on the resonance maximum, that is, a doped hole scatters as strongly as a Pb atom.

Abbamonte et al., Nat. Phys. I, 155 (2005)

Photon energy (hv)

Photon energy (hv)

There is no better place than NSLS-II

Beamline CSX-I:

 World's brightest and fully coherent facility for soft x-ray scattering beamline (~10¹³ ph/s).

Beamline SIX:

 Resonant inelastic x-ray scattering with highest energy resolution (60000 resolving power) Electronic orders in copper oxide high-temperature superconductors (cuprates)

Structure

Superconductivity

Barisic et al., PNAS 110, 12235 (2013)

Keimer et al., Nature 518, 179 (2015)

Charge order in cuprates

Working near resonance is key!

Charge order in cuprates

Charge ordering in Bi2201 – RXS and STM

Why resonant scattering?

$$I_{\text{XRD}}(\boldsymbol{Q}) \propto \left| (\varepsilon' \cdot \varepsilon^*) \sum_{i} f_i(\boldsymbol{Q}) e^{i\boldsymbol{Q} \cdot \boldsymbol{R}_i} \right|^2 \qquad f_i(\boldsymbol{Q}) \xrightarrow[Q \to 0]{} Z_i$$
SCALAR

$$I_{\text{RXS}}(\boldsymbol{Q}) \propto \left| \varepsilon_{\alpha}' \cdot \left(\sum_{i} f_{i}^{\alpha\beta}(\boldsymbol{Q}, E) e^{i\boldsymbol{Q} \cdot \boldsymbol{R}_{i}} \right) \cdot \varepsilon_{\beta}^{*} \right|^{2}$$

Phase factor

Charge

 $I_{\rm XRD}$

= 0

 $Q \propto Q \times (1 - 1 + 1 - 1)$

Form factor

$$I_{\text{XRD}}(\boldsymbol{Q}) \propto \left| (\varepsilon' \cdot \varepsilon^*) \sum_{i} f_i(\boldsymbol{Q}) e^{i\boldsymbol{Q} \cdot \boldsymbol{R}_i} \right|^2 \qquad f_i(\boldsymbol{Q}) \xrightarrow[Q \to 0]{} Z_i$$
SCALAR

$$I_{\text{RXS}}(Q) \propto \left| \varepsilon_{\alpha}' \cdot \left(\sum_{i} f_{i}^{\alpha\beta}(Q, E) e^{iQ \cdot R_{i}} \right) \cdot \varepsilon_{\beta}^{*} \right|^{2}$$
TENSOR

Phase factor		-1	1	-1	$\propto f_A \cdot (1+1)$
Charge	Q	Q	Q	Q	$-f_B \cdot (1+1)$ = $2 \cdot (f_A - f_B)$
Form factor	f_A	f_B	f_A	f_B	$\neq 0$

Access the symmetry of the charge (or spin/orbital) distribution

The inner symmetry of charge order **Charge density**

k-dependence

$$\Delta_{CDW}(\mathbf{k}, \mathbf{Q}) = \delta(\mathbf{Q} - \mathbf{Q}^*) \cdot [\Delta_S + \Delta_{S'}(\cos k_x + \cos k_x) + \Delta_d(\cos k_x - \cos k_x)]$$

$$F_{pq}(\pm \boldsymbol{Q}_{CO}) =$$

$$\delta_s egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & \gamma \end{pmatrix}$$

$$\delta_{S'}\begin{pmatrix}\cos\phi & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0\end{pmatrix}$$

$$\delta_d \begin{pmatrix} \cos \phi & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Revealing the symmetry of charge order in YBCO

Revealing the symmetry of charge order in YBCO

The symmetry of electronic excitations (RIXS)

The symmetry of electronic excitations (RIXS)

The next frontier: Coherent scattering

Zone-plate focusing optics: 70 nm spot size

First case study: spin-density-wave in NdNiO₃ thin films

RECIPROCAL SPACE

Speckle pattern: coherent interference between magnetic domains

Coherent magnetic scattering from spin-density wave in NdNiO₃

First case study: spin-density-wave in NdNiO₃ thin films

Coherent magnetic scattering from spin-density wave in NdNiO₃

REAL SPACE (mapping)

Nano-mapping of order parameter

First case study: spin-density-wave in NdNiO₃ thin films

COHERENT DIFFRACTIVE IMAGING

(phase is guessed and optimized to satisfy external constraints)

PTYCHOGRAPHY

(Scan grid + overlap constraints to retrieve phase)

PTYCHOGRAPHY

(Scan grid + overlap constraints to retrieve phase)

Analysis in progress

- Highly-coherent soft X-ray scattering provides a very timely opportunity to push the envelope on spatial resolution.
- These new capabilities will prove essential to study naturally inhomogeneous or artificially nanostructured systems.

Acknowledgments

MIT Photon Scattering Group

Jiarui Li Jonathan Pelliciari Min Gu Kang Zhihai Zhu

BNL – beamline CSX-I

C. Mazzoli A. Barbour S. Wilkins

Thank you!

